Least Squares for the Perturbed Stokes Equations and the Reissner-Mindlin Plate

نویسنده

  • Zhiqiang Cai
چکیده

In this paper, we develop two least-squares approaches for the solution of the Stokes equations perturbed by a Laplacian term. (Such perturbed Stokes equations arise from finite element approximations of the Reissner–Mindlin plate.) Both are two-stage algorithms that solve first for the curls of the rotation of the fibers and the solenoidal part of the shear strain, then for the rotation itself (if desired). One approach uses L2 norms and the other approach uses H−1 norms to define the least-squares functionals. It is shown that the H−1 norm approach, under general assumptions, and the L2 norm approach, under certain H2 regularity assumptions, admit optimal performance for standard finite element discretization and either standard multigrid solution methods or preconditioners. These methods do not degrade when the perturbed parameter (the plate thickness) approaches zero. We also develop a three-stage least-squares method for the Reissner–Mindlin plate, which first solves for the curls of the rotation and the shear strain, next for the rotation itself, and then for the transverse displacement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Analysis of Reissner-Mindlin Shallow Shells with FGM Properties by the MLPG

A meshless local Petrov-Galerkin (MLPG) method is applied to solve problems of Reissner-Mindlin shells under thermal loading. Both stationary and thermal shock loads are analyzed here. Functionally graded materials with a continuous variation of properties in the shell thickness direction are considered here. A weak formulation for the set of governing equations in the Reissner-Mindlin theory i...

متن کامل

A Negative - Norm Least Squares Method for Plates

In this paper a least squares method, using the minus one norm developed in 6] and 7], is introduced to approximate the solution of the Reissner-Mindlin plate problem with small parameter t, the thickness of the plate. The reformulation of Brezzi and Fortin is employed to prevent locking. Taking advantage of the least squares approach, we use only continuous nite elements for all the unknowns. ...

متن کامل

A negative-norm least squares method for Reissner-Mindlin plates

In this paper a least squares method, using the minus one norm developed by Bramble, Lazarov, and Pasciak, is introduced to approximate the solution of the Reissner-Mindlin plate problem with small parameter t, the thickness of the plate. The reformulation of Brezzi and Fortin is employed to prevent locking. Taking advantage of the least squares approach, we use only continuous finite elements ...

متن کامل

A Finite Volume Formulation for the Elasto-Plastic Analysis of Rectangular Mindlin-Reissner Plates, a Non-Layered Approach

This paper extends the previous work of authors and presents a non-layered Finite Volume formulation for the elasto-plastic analysis of Mindlin-Reissner plates. The incremental algorithm of the elasto-plastic solution procedure is shown in detail. The performance of the formulation is examined by analyzing of plates with different boundary conditions and loading types. The results are illustrat...

متن کامل

Complex Wave-number Dispersion Analysis of Stabilized Finite Element Methods for Acoustic Fluid – Structure Interaction

The application of finite element methods to problems in structural acoustics ( the vibration of an elastic body coupled to an acoustic fluid medium) is considered. New stabilized methods based on the Hellinger-Reissner variational principle with a generalized least-squares modification are developed which yield improvement in accuracy over the standard Galerkin finite element method for both i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2000